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Metal-mediated cycloaddition reactions provide a range of cyclic ~ Surprisingly, complex is both indefinitely stablandfluxional
polyenyl ligands coordinated to transition metals. The coordination at room temperature, as established by double irradiation experi-
mode adopted by such ligands determines to a considerable extenments? rapidly equilibrating with the otherwise undetected cyclo-
the strategies available for subsequent elaboration and demetalatiomeptatriene hydride compleX. At 80 °C, however, slow isomer-
of the organic moiety. For the most part, cyclic polyenyl ligands ization occurs to give the more thermodynamically stabte
unconstrained by bridged structures adopt fully conjugated coor- coordinated isomet.>11 The formation and subsequent isomerization
dination modes, typically as a direct consequence of thermodynamicof the#?,;*-complex2 strongly supports prior mechanistic proposals
preferences. New coordination modes and, in particléascon- rationalizingz®-cycloheptadienyl ring formation in the cobalt and
jugated coordination modes raise new possibilities for post-cycli- iridium seriestab
zation functionalization and demetalation pathways, both essential A lower activation barrier forpl,n* to n>isomerization is

to the development of synthetically valuable transformations. apparent in the reaction dert-butylacetylene, which proceeds
All unbridged cycloheptadienyl complexes of the transition directly to #5-cycloheptadienyl compleX®1? even under mild
metals exhibit fully conjugategl®-coordinationt > Transient forma- reaction conditions. Ng',;z*-coordinated isomer is detected in the

tion of np*coordinated intermediates has been proposed for crude reaction mixture. Among several minor products, the simple
cobalt- and iridium-mediated allyl/alkyne {8 2 + 2] cycloaddition acyclic 1tert-butyl-5-pentadienyl comple%® (~4%, not shown)
reactions’ ¢ but no evidence to support this conjecture has been can be isolated by chromatography.
obtained. Here, however, we report the selective formation of  Although some reactions of compleka with alkynes are
unprecedenteg?,y*-cycloheptadienyl complexes from ruthenium- complicated?® treatment with dimethylacetylene dicarboxylate
mediated allyl/alkyne cycloaddition. The unique coordination mode (DMAD) provides 51,n*cycloheptadienyl complex free from
promotes unique oxidative demetalation pathways, leading to the significant byproduct814 The substituent array in complé&xcan
efficient construction of synthetically valuable seven-membered arise only by extensive isomerization of the initigl*-cyclohep-
carbocycles. tadienyl intermediate, presumably via iteratB4aydride elimination

To induce ruthenium to mediate seven-membered ring formation and reinsertion (Scheme 2). Notably, the system reaittsperfect
over cyclization to the kinetically favored six-membered ring, the fidelity for migration to n%*coordination rather than fully
ancillary #%-benzene ligand used in previous investigationas conjugated;®>-hapticity. No further reaction is induced upon heating,
replaced with the sterically largef®-hexamethylbenzene ligand.  strongly suggesting that the',s*-coordination mode is thermo-
In the event, treatment of allyl compleba® with excess ethyne dynamically favored.
leads to the clean formation of two inseparable cycloaddition  The electron-deficient alkyne also allows for cycloaddition
products, strongly favoring seven- over six-membered ring forma- reactions incorporating two different alkynes. Unique among
tion (Scheme 13. The major product was identified as the alkynes? treatment of complegtawith 1 equiv of DMAD leads to
unexpectedsymmetricyt,n*-cycloheptadienyl complef by two- exclusive formation of theacyclic adduct, [(GMeg)Ru(1,2syn
dimensional NMR spectroscop9.The resonance for the unique dicarbomethoxypentadienyl)]OT8 (90%, not shownj. In wet
o-bonded methine appears characteristically shifted upfield in both benzene, however, the reaction stops at #fg?-vinyl olefin

IH NMR (6 —0.09) and®*C NMR (6 —38.1) spectra. intermediate, providing cationic aquo comp{Scheme 1Y.This
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complex converts slowly and quantitatively at room temperature
to 5-pentadienyl comple8. Similarly, solvolysis of allyl chloride
complex 1b' in trifluoroethanol containing DMAD gives the
analogous but neutral vinyl olefin compléX in near quantitative
yield.®

Complexe® and10transform selectively tg*,;*-cycloadducts
on treatment with a second alkyne. Optimal yields and selectivity
are obtained from neutral complé® under conditions of assisted
ionization, providing;t,*-cycloheptadienyl complexeisl and13
from the reactions of ethyne and 2-butyne, respectively (Scheme
1).216 Structurally distinct minor products are isolated from each
reaction, including the unusuatyclic %3,n?-heptadienyl complex
12, which presumably arises from allylic€H bond activation
following migratory insertion of ethyne. Structural assignments for
complexesl2, 13, and14 have been confirmed by X-ray crystal-
lography?

The unique coordination of the?*cycloheptadienyl ring
suggested the use of oxidative bond heterolysis as a novel
demetalation strategy, simultaneously effecting both scission of the
metal-carbon o-bond and minimization of metaldiene back-
bonding?” In the event, exhaustive iodinolysis indeed mediates the
decomplexation of cycloadduc®and 11, returning the unusual
tricyclic lactones17 in moderate to good yields (Scheme?®3§.
The Ru(lll) coproduct was identified crystallographically as triiodide
salt 18° accounting for the unexpected stoichiometry in iodine.
Direct chromatography of the crude reaction mixture without
thiosulfate workup unmasks the latent seven-membered ring,
providing cycloheptatrien&9 exclusively?1°lodinolysis of complex
13leads directly to cycloheptatriene anhydriiEin as yet variable
yields? a bicyclic ring system of considerable synthetic intefést.

The use of stoichiometric (but recyclable) ruthenium obviously
limits the potential use of this cycloaddition reaction in organic
synthesis. Nonetheless, the strong preferencggf-coordination
of the seven-membered ring is unique in transition metal chemistry,
offering mechanistic insight and raising new opportunities for
developing synthetically valuable metal-mediated cycloaddition and
demetalation reactions.
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